عدد بانداژ در گرافها

thesis
  • وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده علوم
  • author داود رحیمی
  • adviser رعنا خوئیلر
  • publication year 1392
abstract

مجموعه d از راسهادر یک گراف g ،مجموعه احاطه گر است اگر هر راس ازg که درd نباشد با حداقل یک راس ازd مجاور باشد.می نیمم اندازه یک مجموعه احاطه گر در g،عدد احاطه ای gنامیده می شود. عدد بانداژاز گراف ناتهی g،کمترین تعداد یالهایی از eاست بطوریکه عدد احاطهای g-e از عدد احاطه ای g بزرگتر باشد.

similar resources

کرانهایی برای عدد امنیت گرافها

چکیده فرض کنید sیک مجموعه ی ناتهی از رئوس گراف g(v ,e)باشد. در این صورت s?v را یک پیمان دفاعی گویند، هر گاه برای هر v?sتعداد همسایه ها در s حداقل به اندازه ی تعداد همسایه های v در v-s باشد. به عبارت دیگر s?v را یک پیمان را یک پیمان دفاعی گویند اگر برای هر v?s داشته باشیم: |n[v]?s|?|n[v]-s|. بنابراین هر رأس در یک پیمان دفاعی می تواند به کمک همسایگانش در s و خارج از s مورد حمایت و مورد دفاع وا...

15 صفحه اول

بررسی عدد احاطه ای رومی در گرافها

مجموعه های احاطه ‏‏گر موضوعی کاربردی و گسترده در نظریه ی گراف می باشد که به صورت های گوناگونی تعمیم یافته و مورد مطالعه قرار گرفته است. زیرمجموعه ی ‎$s$‎ از ‎$‎v(‎g)$‎ را یک مجموعه‎‏ ی احاطه ‏گر گویند هرگاه ‎$n[s]=v(g)$‎. کمترین اندازه ممکن برای یک مجموعه ی احاطه گر را عدد احاطه ای گویند و با ‎$gamma(g)$‎ ‎‏نمایش می دهند. تابع ‎$f:v(g) ightarrow {0,1‎, ‎2}$‎ را یک تابع احاطه گر رومی روی...

15 صفحه اول

عدد احاطه کننده موضعی در گرافها

بدست اوردن مجموعه های احاطع کننده های موضعی در گرافها وبدست اوردن مینیمم انمدازه ان در چند گراف خاص

عدد احاطه گر علامت دار در گرافها

در این پایان نامه عدد احاطه گر علامت دار راسی (یالی) معرفی می شود و مقدار ان برای بعضی از گرافها محاسبه می گردد. همچنین وجود کرانهایی را برای عدد احاطه گر علامت دار ، اثبات می کنیم . سپس عدد احاطه گر علامت دار اجباری راسی را تعریف کرده و مقدار ان را برای بعضی از گرافها بدست می اوریم و در پایان مفهوم ان را به یالها تعمیم می دهیم.

15 صفحه اول

عدد احاطه ای مهار شده در گرافها

فرض کنید g = (v;e) گرافی با مجموعه رئوس v و مجموعه یالهای e باشد. مجموعه d از از رئوس گراف g یک مجموعه احاطه گر است هرگاه هر عضو v-d با راسی از d مجاور باشد. مجموعه d از رئوس گراف g یک مجموعه احاطه گر مهار شده است هرگاه هر راسی که در d نیست با راسی از d و راسی از v-d مجاور باشد. عدد احاطه ای مهار شده g یعنیr(g) مینیمم اندازه یک مجموعه احاطه گر مهار شده در g است. در این پایان نامه کرانهایی برایr...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده علوم

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023